Effects of ZrO_2 and Y_2O_3 dissolved in zyttrite on the densification and the α/β phase transformation of Si_3N_4 in Si_3N_4 –ZrO₂ composite

JAE RYONG KIM, CHONG HEE KIM

Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul, Korea

In Si₃N₄–ZrO₂ composite, the effects of zirconia and Y₂O₃ dissolved in zyttrite on the densification and the α/β phase transformation of Si₃N₄ were studied using hot-pressing of Si₃N₄ with the addition of pure, 3, 6, and 8 mol % Y₂O₃-doped zirconia. Reaction couples between Si₃N₄ and ZrO₂ of zyttrite were made to observe the reaction phenomena. The addition of pure zirconia was not effective to obtain full density of the Si₃N₄–ZrO₂ composite. However, Y₂O₃ diffused from the added zyttrite promoted densification; the density of Si₃N₄ with 5 vol % pure ZrO₂ composite was 71% theoretical, and nearly full density (>97%) could be obtained in Si₃N₄ with 5 vol % 6, 8 mol% Y₂O₃-doped ZrO₂ composite. On the basis of observations of the Si₃N₄-pure ZrO₂ reaction couple, the reaction between Si₃N₄ and ZrO₂ resulted in the formation of Si₂N₂O phase, and the α/β phase transformation of Si₃N₄ and zrO₂ resulted that the reaction products, Y₂Si₂O₇ and Y₂Si₃N₄O₃ phases, play an important role in the densification of Si₃N₄ –zyttrite composite.

1. Introduction

Silicon nitride is a well-known candidate material for heat engine and cutting tools, because of its good thermal-shock resistance, high-temperature strength and oxidation resistance. Generally, a dense silicon nitride body is fabricated by pressureless sintering, hot-pressing or hot isostatic pressing processes with the addition of sintering aids, such as MgO, Y₂O₃, CeO₂, etc. Since 1975, a few workers have studied hot-pressed Si₃N₄ with the addition of mono-zirconia or zyttrite (yttria-stabilized zirconia) [1-9]. These Si_3N_4 -ZrO₂ composites were shown to be superior to hot-pressed $Si_3 N_4$ with MgO with regard to room- and high-temperature strength, oxidation resistance and capability as cutting tools [6–8]. Lange [4] reported that toughness could be increased by compressive surface stress resulting from the oxidation of Si_3N_4 -ZrO₂ composite.

Previously, workers were primarily concerned about the effects of added zirconia on the beneficial properties of Si₃N₄ ceramics, thus little is known about the details of the effects of zirconia on the densification and the α/β phase transformation of Si₃N₄ [4–10]. Moreover, the behaviour of Y₂O₃ dissolved in zyttrite has been almost neglected in Si₃N₄–zyttrite composite.

In the present work, the effects of ZrO_2 and Y_2O_3 dissolved in zyttrite on the densification and the α/β phase transformation of Si₃N₄ were studied using pure 3, 6, and 8 mol % Y₂O₃-doped zirconia powder without any other sintering aids. In order to observe the reaction phenomena between Si₃N₄ and ZrO₂ (pure or zyttrite), reaction couples were made. Specimens for this study were made by hot-pressing.

2. Experimental procedure

Commercially available Si₃N₄ powder (LC-12, H. C. Starck, Berlin, West Germany; ratio of α and β is 94 to 3 and contained less than 0.1 wt % free silicon) and 0, 3, 6, 8 mol % Y₂O₃-doped zirconia (TZ-0 and TZ-3Y, 6Y, 8Y, respectively, Toyo Soda Co., Tokyo, Japan; for convenience, Y₂O₃-doped zirconia powders are expressed as a zyttrite in this article) (denoted 0Y, 3Y, 6Y, and 8Y, respectively) powders were used to prepare the mixtures of Si_3N_4 and 5, 10, 15, 20, and 30 vol % of various zirconia. The mixtures were centrifugally mixed in acetone for 2 h using zirconia balls and jar (Pulverisette 6, Fritsch, West Germany). For more uniform mixing of Si_3N_4 and zirconia powders, these mixtures were again vibration mixed (Spex 8000 mixer/mill, Edison, New Jersey, USA) for 10 min in a teflon-coated container with zirconia balls, and then dried in an oven.

The dried mixture screened to -60 mesh, was hotpressed in a tungsten mesh heater furnace (Model 60 series, Centorr Associate, Inc., Suncook, New Hampshire, USA) using BN coated graphite die (2 cm i.d.). 1 atm N₂ atmosphere was maintained during hotpressing, and the temperature and pressure were 1750°C and 35 MN m⁻², respectively. Temperature was measured pyrometrically to \pm 5°C.

For the reaction couples between Si_3N_4 and pure $ZrO_2(0Y)$ or zyttrite, as-received Si_3N_4 powder was

Figure 1 Schematic diagram of Si₃N₄-ZrO₂ reaction couple.

die-pressed to form discs (1 cm i.d.) and subsequently cold isostatically pressed at 150 MN m^{-2} . These compacts were, then embedded in 0Y, 3Y and 8Y zirconia powder as shown in Fig. 1. These reaction couples were hot-pressed under the same conditions described above.

Microstructural characterization of the interface of reaction couples, was made by optical microscopy (Zeiss, West Germany) and scanning electron microscopy (SEM, ETEC Autoscan Co., Hayward, California, USA), and phase identification was performed by X-ray diffraction (XRD, Rigaku, Japan). Transmission electron microscopy (TEM, Model 200 CX, Jeol, Tokyo, Japan) was used to distinguish cubic and tetragonal zirconia phase in Si₃N₄ matrix. The electron transparent specimen for TEM was obtained by argon-ion bombardment technique (MIN, Technics, Inc., USA). The specimen was thinned from both sides with an incident angle of 15° with an average voltage of 5kV. The density of the hot-pressed body was determined by Archimedes method, and the theoretical density was calculated by the rule of mixture.

3. Results and discussion

3.1. Si₃N₄-ZrO₂ composites

3.1.1. Effect of added zirconia on the densification

Pure Si_3N_4 and the mixtures of Si_3N_4 and 5 vol % 0Y, 3Y, 6Y, and 8Y ZrO₂ were hot-pressed to investigate

Figure 2 Variations of relative density of hot-pressed Si_3N_4 with 5 vol % ZrO₂ composite with the addition of various zirconia (pure, 3, 6, 8 mol % Y₂O₃-doped zirconia) and hot-pressed pure Si_3N_4 .

Figure 3 Variations of relative density of hot-pressed Si_3N_4 with (O) 3, (\Box) 6, (Δ) 8 mol % Y_2O_3 -doped zirconia composite with the amount of added zirconia.

the effect of zirconia on the densification. Fig. 2 shows the final densities obtained by hot-pressing pure Si_3N_4 , mixtures of Si_3N_4 and various zirconia. The addition of only 5 vol % 6Y and 8Y zirconia increased the density up to 97% and 99% theoretical, respectively. However, the density of pure Si_3N_4 was low (57%). Therefore, densification did not take place in hot-pressed pure Si_3N_4 . The density of Si_3N_4 with 5 vol % 0Y ZrO₂ composite (71%) was higher than that of pure Si_3N_4 . From these results, Y_2O_3 in zyttrite affected the densification dominantly rather than ZrO_2 phase.

Fig. 3 shows the variations in density of hot-pressed Si₃N₄-zyttrite composite with the amount of added 3Y, 6Y, 8Y zirconia. Si₃N₄ with 6Y and 8Y zirconia composites show high densities (97%) regardless of the amount of added zirconia, but densities of Si_3N_4 with 3Y ZrO₂ composite cannot exceed 80% theoretical up to 20 vol % zirconia. These results support the fact that densification of these composites is mainly affected by the content of Y₂O₃ in zyttrite. According to Fick's first law, the total amount of Y₂O₃ diffused from zyttrite depends on the ΔC (concentration gradient of Y_2O_3 between zyttrite and the matrix) and temperature. Therefore, significant densification could not occur when 3Y ZrO₂ was added to Si₃N₄, because ΔC of 3Y ZrO₂ was lower than that of 6Y and 8Y ZrO₂. Moreover, nearly full density (98%) was obtained in Si_3N_4 with 5 vol % 3Y ZrO₂ composite by raising the hot-pressing temperature up to 1850° C i.e. increasing D: diffusivity, D, is exponentially proportional to the temperature. So, it is concluded that Y_2O_3 diffused from zyttrite promotes the densification of Si_3N_4 zyttrite composite. But the Si_3N_4 and zyttrite system involves various chemical reaction processes; the diffusion process is not simply expressed as described above. Thus, to explain fully the density variations with the addition of $3Y ZrO_2$, further work is required to complement the diffusion process.

3.1.2. Phase identification

In order to evaluate the role of the zirconia on the α/β

Figure 4 XRD pattern of (a) as-received Si₃N₄ powder, (b) hot-pressed pure Si₃N₄, (c) hot-pressed Si₃N₄ with 5 vol % 3 mol % Y₂O₃-doped zirconia composite, and (d) hot-pressed Si₃N₄ with 5 vol % 6 mol % Y₂O₃-doped zirconia composite: (A) α -Si₃N₄, (B) β -Si₃N₄, (O) Si₂N₂O, (Z) cubic or tertragonal zirconia, (M) monoclinic zirconia peaks.

phase transformation of Si₃N₄, X-ray analysis was performed (Fig. 4). A significant α/β ratio change could not be detected in hot-pressed pure Si₃N₄ composite* compared to the starting powder (0.044), Figs 4a, b. However in Si₃N₄-0Y ZrO₂ composite, β -Si₃N₄ and Si₂N₂O (silicon oxynitride) peaks were detected together (Fig. 4c). Therefore, ZrO₂ phase seems to be concerned with the formation of Si₂N₂O phase, and the α/β phase transformation of Si₃N₄ also seems to be caused by this Si₂N₂O phase; this will be discussed in detail in a later section. With this, it is conceivable that the density of Si₃N₄ with 0Y ZrO₂ composite, compared with that of the hot-pressed pure Si₃N₄, is slightly increased by Si₂N₂O phase. On the basis of these suggestions, Si₂N₂O phase influences the phase transformation rather than the densification of Si_3N_4 ; the phase transformation of Si₃N₄ is not always accompanied by densification [12]. Also, zirconia existing in this composite as a mono and cubic phase, was reported by Claussen as a "nitrogen stabilized zirconia" [10]. For this cubic phase, Lange also reported the $ZrO_{2-2x}N_{4x/3}$ $0.25 \le x \le 0.43$ (zirconium oxynitride) in Si_3N_4 -ZrO₂ composite [4].

The XRD pattern of Si₃N₄ with 3Y ZrO₂ composite was composed of cubic or tetragonal ZrO_2 , β -Si₃N₄ and Si₂N₂O peaks (Fig. 4d); the XRD patterns of Si₃N₄ with 6Y and 8Y ZrO₂ composite were similar to those of Si₃N₄ with 3Y ZrO₂ composite. As described earlier, if Y_2O_3 in zyttrite mainly acted as a sintering aid rather than a stabilizer for zirconia, it might be expected that yttria-stabilized cubic zirconia would be transformed to tetragonal phase which had a lower Y_2O_3 content [13]. From TEM works, the presence of the tetragonal ZrO₂ in Si₃N₄ with 8Y ZrO₂ composite was confirmed as shown in Fig. 5. This result indicates that the zirconia which is stable in the cubic region is moved to the low Y2O3 content region, i.e. tetragonal + cubic region, by diffusion of Y_2O_3 from zyttrite during hot-pressing.

3.2. Si_3N_4 –ZrO₂ reaction couples

3.2.1. Microstructures of reaction couples

To investigate the reaction product of Si_3N_4 -ZrO₂, reaction couples were used. Fig. 6 shows optical micrographs of the interfaces between Si_3N_4 and 0Y, 3Y, and 8Y zirconia. In the Si_3N_4 -OY ZrO₂ reaction

* β fraction was determined by comparing the intensities of $\alpha(210)$ and $\beta(210)$ diffraction peaks, in a manner described by Gazzara and Messier [11]. In this case, β fraction was 0.203.

Figure 5 Transmission electron micrographs of hot-pressed Si₃N₄ with 30 vol % 8 mol % Y₂O₃-doped zirconia: (a) bright-field image and (b) selected-area diffraction pattern of Z region in (a); $B = [0\,1\,1]c$, t (S, Si₃N₄; Z, ZrO₂).

couple, no significant reaction layer could be shown and the interface is flat (Fig. 6a). Recently, in the α/β phase transformation of Si_3N_4 , β -Si₃N₄ phase was precipitated via silicon melts [12, 14, 15]. A similar change in morphology was observed in the reaction layer between Si_3N_4 and zyttrite. Both interfaces of the Si_3N_4 -3Y and 8Y ZrO₂ reaction couples are rough, and a bright reaction layer containing a large precipitated phase can be seen (Fig. 6b, c). At the interface between Si_3N_4 and the bright reaction layer (marked by arrows), a fine precipitated phase is observed. The interface between ZrO_2 and the bright reaction layer was easily separated because of their large thermal expansion mismatch $(\text{Si}_3\text{N}_4: \simeq 3.5 \times 10^{-6}, \text{ZrO}_2: \simeq 8 \text{ to } 10 \times 10^{-6} \text{ C}^{-1}).$ Scanning electron micrographs of Si₃N₄-3Y ZrO₂ reaction couple show glassy phase (Fig. 7a) and elongated β -Si₃N₄ (Fig. 7b) at the reaction layer; these

micrographs were obtained from the viewing angle which was vertical to the reaction layer and parallel to the hot-pressing direction. However, the central part of Si₃N₄ in the reaction couple contains equi-axed β -Si₃N₄ of initial morphology (Fig. 7c), and spherical zirconia grains (2 to 6 μ m) (Fig. 7d) exist in the outer part of the reaction layer. On the basis of observation of the above microstructure, it is considered that Y₂O₃ diffuses from the zyttrite reacts with Si₃N₄ during hotpressing and forms a glass phase. Accompanying this, the α/β phase transformation of Si₃N₄ can occur via this phase.

3.2.2 Reaction products of Si₃N₄-ZrO₂ reaction couples

 α,β -Si₃N₄ and strong Si₂N₂O peaks could be detected in the Si₃N₄-0Y ZrO₂ reaction couple (Fig. 8a). This result provides strong evidence for the formation of Si₂N₂O phase resulting from the reaction between Si₃N₄ and ZrO₂. Gauckler *et al.* [16] reported that the Si₂N₂O phase could be related to the reaction between Si₃N₄ and ZrO₂, and Terao [9] reported that the Si₂N₂O phase increased with the amount of added ZrO₂ in hot isostatically pressed-Si₃N₄. In the previous section, β -Si₃N₄ and Si₂N₂O peaks were detected together in hot-pressed Si₃N₄ with 0Y ZrO₂ composite. If cubic zirconia in Si₃N₄ is present in the

Figure 6 Optical micrographs of the interface of Si₃N₄ and (a) pure zirconia, (b) $3 \mod \% Y_2O_3$ -doped zirconia, (c) $8 \mod \% Y_2O_3$ -doped zirconia reaction couple (S, Si₃N₄; Z, ZrO₂, bright phase in (b), (c), reaction layer).

Figure 7 Scanning electron micrographs of Si_3N_4 and $3 \mod \% Y_2O_3$ -doped zirconia reaction couple: (a) and (b) at interface region, (c) at central part of Si_3N_4 and (d) at zirconia region.

form of zirconium oxynitride [4, 10], therefore, the formation of silicon oxynitride can be considered as follows

$$ASi_3N_4 + BZrO_2 \rightarrow CZrO_{2-2x}N_{3x/4} + DSi_2N_2O$$

where A, B, C, D are constant. Oxygen atoms in ZrO_2 are substituted by nitrogen atoms, and can form a silicon oxynitride phase. Subsequently, α/β phase transformation of Si₃N₄ occurs via Si₂N₂O glass during hot-pressing. Here, although the possibility of

Figure 8 XRD pattern of the interface of Si₃N₄ and (a) pure zirconia, (b) $3 \mod \% Y_2O_3$ -doped zirconia reaction couple: (A) α -Si₃N₄, (B) β -Si₃N₄, (O) Si₂N₂O, (Z) cubic or tetragonal zirconia, (Y) $Y_2Si_2O_7$, (Y') $YY_2Si_3N_4O_3$ peaks.

the reaction of Si_3N_4 and surface silica to form a silicon oxynitride is not ruled-out, it seems that this reaction does not actively occur in this system; if Si_2N_2O phase was actively formed by this reaction, a significant phase transformation would occur in the hot-pressed pure Si_3N_4 .

In the case of the Si_3N_4 -zyttrite reaction couple, β -Si₃N₄, Si₂N₂O, Y₂Si₃N₄O₃ (silicon yttrium oxynitride), and $Y_2Si_2O_7$ (yttrialite) peaks were detected (Fig. 8b). For the Y₂Si₂O₇ phase, Clark [17] reported that the α/β phase transformation and the densification of Si₃N₄ could occur via the Y₂Si₂O₇ phase. Also, the $Y_2Si_3N_4O_3$ phase was frequently observed in Si_3N_4 sintered with Y₂O₃ [18-20]. Therefore, in this system, the phase transformation can take place via $Si_2N_2O_1$, $Y_2Si_3N_4O_3$, and $Y_2Si_2O_7$ phases. However, it is not possible to determine the phase which affects the phase transformation dominantly rather than the others. It is suggested that the major reaction products of the reaction between Si₃N₄ and zyttrite are $Y_2Si_3N_4O_3$ and $Y_2Si_2O_7$ phase, which can play an important role in the densification of Si₃N₄-zyttrite composites.

Conclusions

1. The role of pure ZrO_2 on densification was not effective in obtaining full density of Si_3N_4 - ZrO_2 composite, but most α - Si_3N_4 phase was transformed to β - Si_3N_4 , resulting from the formation of Si_2N_2O phase.

2. In Si₃N₄-zyttrite composite, nearly full density (>97%) could be obtained by the addition of 5 vol % 6Y or 8Y ZrO₂, but the densification did not occur sufficiently in the case of the addition of 3Y ZrO₂. From these results, it is suggested that Y₂O₃ diffused from the added zyttrite promotes the densification of the Si₃N₄-zyttrite composite, and the densification depends on the content of Y₂O₃ in the zyttrite. Related to this, a tetragonal zirconia phase stable in the cubic + tetragonal region was observed.

3. In the Si₃N₄-pure ZrO₂ reaction couple, the reaction between Si₃N₄ and ZrO₂ resulted in the formation of Si₂N₂O phase, and the α/β phase transformation of Si₃N₄ occurred via this Si₂N₂O phase. In the Si₃N₄zyttrite reaction couple, a bright reaction layer containing large and fine β -Si₃N₄ precipitates was observed. From the XRD analysis of this reaction layer, it is suggested that the reaction products of the reaction between Si₃N₄ and zyttrite, Y₂Si₃N₄O₃ and Y₂Si₂O₇ phases, play an important role in the densification of Si₃N₄-zyttrite composite.

References

- 1. R. W. RICE and W. J. McDONOUGH, J. Amer. Ceram. Soc. 58 (1975) 264.
- 2. Y. INOMATA, Y. HASEGEWA, T. MATSUYAMA and Y. AJIMA, Yogyo Kyokai Shi 84 (1976) 600.
- 3. N. CLAUSSEN and J. JAHN, J. Amer. Ceram. Soc. 61 (1978) 94.
- 4. F. F. LANGE, ibid. 63 (1980) 94.
- 5. D. A. SHOCKEY and K. C. DAO, Amer. Ceram. Soc. Bull 60 (1981) 256.
- 6. S. DUTTA and B. BUZEK, J. Amer. Ceram. Soc. 67 (1984) 89.
- 7. W. A. SANDERS and D. M. MIESKOWSKI, *Adv. Ceram. Mater.* **1** (1986) 166.
- G. W. BABINI, A. BELLOSI, R. CHIARA and M. BRANO, Adv. Ceram. Mater. 2 (1987) 146.
- 9. K. TERAO, J. Amer. Ceram. Soc. 71 (1988) c-167.
- 10. N. CLAUSSEN, R. WAGNER, L. J. GAUCKLER and G. PETZOW, *ibid.* 61 (1978) 369.
- 11. C. P. GAZZARA and D. R. MESSIER, Amer. Ceram. Soc. Bull. 56 (1977) 777.
- 12. J. R. KIM and C. H. KIM, J. Korean Ceram. Soc. 23 (1986) 67.
- R. RUH, K. S. MAZDIYASNI, P. G. VALENTINE and H. O. BIELSTEIN, J. Amer. Ceram. Soc. 67 (1984) c-190.
- 14. J. Y. PARK, J. R. KIM and C. H. KIM, *ibid*. **70** (1987) c-240.
- 15. J. Y. PARK and C. H. KIM, J. Mater. Sci. 23 (1988) 3049.
- L. J. GAUCKLER, J. WEISS and G. PETZOW, "Energy and Ceramics", edited by P. Vincenzini (Elsevier, Netherlands, 1980) p. 671.
- 17. D. R. CLARK, "Sintering Process", edited by G. C. Kuczynski (Plenum, New York, 1980) p. 303.
- 18. A. TSUGE, K. NISHIDA and M. KOMATSU, J. Amer. Ceram. Soc. 58 (1975) 323.
- 19. F. F. LANGE, S. C. SINGHAL and R. C. KUCZYN-SKI, *ibid.* **60** (1977).
- 20. D. R. CLARK and G. THOMAS, ibid. 61 (1978) 778.

Received 29 November 1988 and accepted 16 March 1989